Chronic Treatment with a Mavacamten-like Myosin-modulator (MYK-581) Blunts Disease Progression in A Mini-pig Genetic Model of Non-obstructed Hypertrophic Cardiomyopathy: In Vivo Evidence For Improved Relaxation And Functional Reserve

del Rio CL1*, Yadav A1*, Ferguson B1*, Zambataro C1*, Smit T2#, Rohret F2#, Guo JL3#, Hargrave A3#, Grinde J3#, Sridhar V3#

1: MyoKardia (CA, USA); 2: Exemplar Genetics (IA, USA); 3: Texas A&M University (TX, USA)

DISCLOSURES: *: Employment/Ownership (MyoKardia, CA, USA) and #:Research Support (MyoKardia, CA, USA)
Hypertrophic cardiomyopathy (HCM) is a chronic disease characterized by **hypercontractility** and remodeling, as well as **impaired relaxation and compliance**.

- Diminished exercise capacity and cardiac reserve
- **Sarcomere disease (mutations)**
Background: Hypothesis

Chronic Myosin-Modulation with MYK-581 can limit residual cross-bridges during diastole, blunting remodeling and improving compliance/relaxation in a mini-pig HCM model.

What is mavacamten (and MYK-581)?

A novel clinical-stage small molecule that regulates contractility by **DIRECT** modulation of cardiac myosin (reduces ATPase activity)

- Inhibits the rate of phosphate release of β-cardiac myosin-S1 (preserves ADP release)
- Decreases the number of actin-binding heads transitioning from the weakly to the strongly bound state

- Stabilizes thick-filament, in particular, the super relaxed state (SRX) of myosin

Background: Hypothesis

Chronic Myosin-Modulation with MYK-581 can limit residual cross-bridges during diastole, blunting remodeling and improving compliance/relaxation in a mini-pig HCM model.

What is mavacamten (and MYK-581)?

A novel clinical-stage small molecule that regulates contractility by DIRECT modulation of cardiac myosin (reduces ATPase activity)

- Inhibits the rate of phosphate release of β-cardiac myosin-S1 (preserves ADP release)
- Decreases the number of actin-binding heads transitioning from the weakly to the strongly bound state

- Stabilizes thick-filament, in particular, the super relaxed state (SRX) of myosin

- Improves compliance/distensibility

METHODS: **Chronic** Experiment (Prevention)

- Cloned male MYH7 R403Q mutant (R403Q) mini-pig littermates (~1M old)
- Randomly assigned to either untreated (CTRL) or MYK (daily) for 12w

Primary End-Points (MYK vs. CTRL)

- **CTRL (n = 10)**
- **MYK (n = 10)**

- Increasing MYK-581 dose (5, 7.5, and 10 mg/day PO) to account for weight gain 6.4±0.3 to 28.3±1.1 kg (P < 0.05)

Hemodynamic data collection

- **β-AR reserve (DOB,10 µg/kg/min IV)**
 - **CTRL (n = 5)**
 - **MYK (n = 6)**

ANES (ISO)

LV (hemodynamics +pressure/volume)

INVASIVE

ANES (ISO)

BASELINE

BLOOD

T1 map

TTE + β-AR (DOB IV)

NON-INVASIVE (IMAGING)

cMR (function, geometry, LGE, T1 mapping)

- **CTRL (n = 10, 5.1 ± 0.1 M, 29.3 ± 1.6 kg)**
- **MYK (n = 10, 5.0 ± 0.1 M, 27.4 ± 1.4 kg)**
RESULTS: MYK Normalized LV/LA in MYH7 R403Q

✓ Blunted hyper-contractility w/ preserved CO
RESULTS: MYK Normalized LV/LA in MYH7 R403Q

- Blunted hyper-contractility with preserved CO
- Preserved LA size (blunted LV mass gain)
RESULTS: MYK Normalized LV/LA in MYH7 R403Q

✓ Blunted hyper-contractility w/ preserved CO
✓ Preserved LA size (blunted LV mass gain)
✓ …and LV structure
 • Reduced T1 times and Extracellular Volume (ECV) fraction
RESULTS: MYK Normalized Diastole in MYH7 R403Q

✓ Spared End-Diastolic Pressures (EDP) and Stiffness (E_{ed})

- Preserving early relaxation

![Graphs showing EDP, E_{ed}, τ_w, and dP/dt_{min} comparisons between CTRL and MYK groups with statistical significance ($P < 0.05$).]
RESULTS: MYK Normalized Diastole in MYH7 R403Q

✓ Spared End-Diastolic Pressures (EDP) and Stiffness (E_{ed})

- Preserved early relaxation

✓ Preserved β-AR reserve (dobutamine challenge)

- ↑ SV (MYK: $+15 \pm 4\%$ vs. $-14 \pm 6\%$, $P<0.05$)
- ↑ CO (MYK: $+60 \pm 8\%$ vs. $+26 \pm 2\%$, $P<0.05$)
Results: MYK Normalized Diastole in MYH7 R403Q

✓ Spared End-Diastolic Pressures (EDP) and Stiffness (E_{ed})

- Preserving early relaxation

✓ Preserved β-AR reserve ...AND blunted mortality (0% vs. 40% in CTRL)
CONCLUSIONS

Chronic direct myosin modulation with **MYK-581** prevented cardiac remodeling characteristic of disease in a genetic HCM model, **preserving** diastolic function, cardiac reserve, left atrial size, and myocardial structure **in vivo**

Mechanistic support for the (preliminary) observations in HCM

Pharmacological Therapy in HF/Cardiomyopathy: The Next Important Indication or Agent?
2:05 p.m. – 2:10 p.m. ET
ORAL PRESENTATION: RF295: Precision Pharmacological Treatment for Obstructive Hypertrophic Cardiomyopathy With Mavacamten: One-Year Results From PIONEER-OLE
Lead author: Stephen B. Heitner, M.D., Oregon Health & Sciences University, Portland, OR

#AHA19
Acknowledgements

- Pharmacology (Henze M, Wong F)
- Biology (Anderson R, Anto A)
- Research (McDowell R)
- DMPK (Carlson T, Yadav A.)
- Clinical
- Mavacamten Team & Founders

- Pigs A5241, A5239, and A9924 (representative)
- Mavacamten (MYK-461)

- Ahmad F (Group)
- Divekar A (Invasive)
- Meyerholz D (Pathology)
- Weiss R (Imaging)

- Rogers C
- Rohret F, Rohret J
- Smith T, Arends T,
- Swart J

- Sridhar V
- Guo JL, Grinde J
- Tuzun E

- Texas A&M Institute for Preclinical Studies
- Texas A&M University
Background: HCM Mini-Pig Model

✓ MYH7 R403Q mutation in Yucatan background
Background: HCM Mini-Pig Model

- MYH7 R403Q mutation in Yucatan background

Diagram:
- Tension (mN/mm²) vs. pCa
- EF (%) vs. pCa
- Disarray Score (n.u.)
- Collagen Area (%)

Graph:
- WT vs. R403Q

Figures:
Background: HCM Mini-Pig Model

✓ Hyper-contractile

...but unchanged dP/dt_{max} (velocity)
Background: HCM Mini-Pig Model

- Hyper-contractile
 ...but unchanged dP/dt_{max} (velocity)

- Diastolic Impairment

- Decreased compliance
Background: HCM Mini-Pig Model

- ✓ Hyper-contractile
 ...but unchanged dP/dt_{max} (velocity)

- ✓ Diastolic Impairment
 - ➢ Decreased compliance and
 - ➢ Hindered relaxation
Background: HCM Mini-Pig Model

✓ Hyper-contractile

…but unchanged dP/dt_max (velocity)

✓ Diastolic Impairment

✓ Decreased β-AR cardiac reserve