Acute Effects of a Small-Molecule Direct Myosin-Modulator (MYK-581) in a Mini-Pig Genetic Model of Non-Obstructed Hypertrophic Cardiomyopathy:

In Vivo Evidence for Contractile Regulation with Improved Compliance and Functional Reserve

del Rio CL\(^1,2\), Yadav A\(^1\), Huang N\(^1\), Geist GE\(^2\), Ueyama Y\(^2\), Youngblood B\(^2\), Evanchik M\(^1\), Green E\(^1\), Divekar A\(^3\), Ahmad F\(^4\)

1: MyoKardia (CA, USA); 2: QTest Labs (OH, USA); 3: UMKC School of Medicine (MO, USA); and 5: University of Iowa Carver College of Medicine (IA, USA)
Background: Hypertrophic Cardiomyopathy (HCM)

• Hypertrophic cardiomyopathy (HCM) is a heritable cardiac disease characterized by *hyper-contraction* as well as *impaired ventricular relaxation and compliance*.
 - Hindered exercise capacity and cardiac reserve
 - Sarcomere disease (mutations)
Background: HCM Mini-Pig Model

✔ MYH7 R403Q mutation in Yucatan background
Background: HCM Mini-Pig Model

✓ MYH7 R403Q mutation in Yucatan background

![Graph showing pCa vs Tension and pCa50 values for WT and R403Q samples at 3 months and pCa 6.4.](image)

Figure:
- Tension (mN/mm²) graph with pCa values for WT and R403Q samples at 3 months.
- pCa50 values for WT and R403Q samples at pCa 6.4.
- EF (%) and Disarray Score graph showing differences between WT and R403Q samples.

Background: MYK-581 (mavacamten analog)

Myosin-modulation with MYK-581 could limit residual cross-bridges during diastole, improving **LV compliance and relaxation** in the mini-pig HCM model.

What is mavacamten?

A novel clinical-stage small molecule that regulates contractility by **DIRECT** modulation of cardiac myosin / biomechanical cycle (reduces ATPase activity)

- Inhibits the rate of phosphate release of β-cardiac myosin-S1 (preserves ADP release)
- Decreases the number of actin-binding heads transitioning from the weakly to the strongly bound state

- Stabilizes thick-filament, in particular, the super relaxed state (SRX) of myosin

- Improves compliance/distensibility

METHODS

- Bred male wild-type (WT) and MYH7 R403Q mutants (R403Q) littermates at 3M of age
- CV profile before/after treatment

\[\text{β-AR reserve (DOB, 10 µg/kg/min IV)} \]
 - MYK-581 at 0.25 mg/kg IV (30min)
 - WT (n = 7, 4.2 ± 0.2 M, 18.6 ± 2.4 kg)
 - R403Q (n = 11, 4.2 ± 0.2 M, 17.8 ± 1.7 kg)
METHODS

- Bred male wild-type (WT) and MYH7 R403Q mutants (R403Q) littermates at 3M of age
- CV profile before/after treatment

ANES (ISO)
- β-AR reserve (DOB, 10 µg/kg/min IV)
 - MYK-581 at 0.25 mg/kg IV (30min)
 - WT (n = 7, 4.2 ± 0.2 M, 18.6 ± 2.4 kg)
 - R403Q (n = 11, 4.2 ± 0.2 M, 17.8 ± 1.7 kg)

TELE
- Chronic/Conscious LVP (telemetry)
 - MYK-581 at 1 mg/kg PO (capsule)
 - β-AR blocker (metoprolol, 2 mg/kg PO)
 - WT (n = 3) and R403Q (n = 4)
RESULTS: Altered Cardiac Function in MYH7 R403Q Mutants

- **Hyper-contractile**

...but unchanged dP/dt_{max} (velocity)
RESULTS: Altered Cardiac Function in MYH7 R403Q Mutants

- Hyper-contractile
 - ...but unchanged dP/dt_max (velocity)
- Diastolic Impairment
 - Decreased compliance
RESULTS: Altered Cardiac Function in MYH7 R403Q Mutants

- **Hyper-contractile**
 - but unchanged dP/dt_{max} (velocity)

- **Diastolic Impairment**
 - Decreased compliance and
 - Hindered relaxation

Graphical Representation:
- **LVP (mmHg) vs. LVV (mL)**
 - WT vs. R403Q
 - E_{es} increased
 - τ increased
 - EDP increased
 - dP/dt_{min} (velocity) unchanged
RESULTS: Altered Cardiac Function in MYH7 R403Q Mutants

- Hyper- contractile
 …but unchanged dP/dt max (velocity)
- Diastolic Impairment
- Decreased β-AR cardiac reserve
RESULTS: MYK-581 Normalized Cardiac Function in MYH7 R403Q

- Reduced Hyper-contractility

![Graph showing normalized cardiac function comparison between R403Q and WT with MYK-581 treatment.](image-url)
RESULTS: MYK-581 Normalized Cardiac Function in MYH7 R403Q

- Reduced Hyper-contractility

- ...but preserved/improved stroke volume/work
RESULTS: MYK-581 Normalized Cardiac Function in MYH7 R403Q

- Reduced Hyper-contractility (w/ preserved SV)
- Improved Diastole (Compliance)

...increased EDV with decreased EDP
RESULTS: MYK-581 Normalized Cardiac Function in MYH7 R403Q

- Reduced Hyper-contractility (w/ preserved SV)
- Improved Diastole (Compliance)

...increased EDV with decreased EDP
RESULTS: MYK-581 Normalized Cardiac Function in MYH7 R403Q

✓ Reduced Hyper-contractility (w/ preserved SV)

✓ Improved Diastole (Relaxation)

shortened tau and lowered EDP (vs. METO)
RESULTS: MYK-581 Normalized Cardiac Function in MYH7 R403Q

- Reduced Hyper-contractility (w/ preserved SV)
- Improved Diastole (Compliance/Relaxation)
- Restored β-AR cardiac reserve
CONCLUSIONS

Direct myosin modulation with MYK-581 (a mavacamten surrogate) in genetic HCM normalized systolic function, while improving ventricular compliance in vivo

• Results support the potential for mavacamten to:
 - Normalize inotropy
 - Improve diastolic function

Potential therapeutic advantage over beta-blockers
Mechanistic support for the salutary observations in HCM
Acknowledgements

Pharmacology (Henze M, Wong F)
Biology (Anderson R, Anto A)
Research (McDowell R)
DMPK (Carlson T, Yadad A.)
Clinical (Semigran M)
Mavacamten Team & Founders

Animals A5241, A5239, and A5219 (signals)
Mavacamten (MYK-461)

Hamlin RL, Youngblood B, Geist G, Ueyama Y, and Roof S

Ahmad F (Group)
Divekar A (Invasive)
Meyerholz D (Pathology)
Weiss R (Imaging)

Rogers R
Rohret F, Rohret J
Smith T, Swart J

Mavacamten Team
Janiak P, Lucats L, Trellu M